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Abstract—The temperature distribution for steady MHD axial flow through a rectangular pipe has been

calculated numerically. Owing to the discontinuity in the wall temperatures, the resulting differential

equation which is a 3-dim. elliptic partial differential equation with variable coefficients, becomes impossible

to handle analytically. The traditional finite difference methods become unsuitable due to the very large

number of unknowns involved. The ADI method is found to be most suitable for the problem as it saves time

as well as computer storage. Graphs are given to depict the temperature distribution near and away from the
discontinuity for various Hartmann numbers.

NOMENCLATURE
c, specific heat;
V,V, velocity ;
B, applied magnetic field ;
B, induced magnetic field;
P, Peclet number ;
k, thermal conductivity;
J, current density;
—K, pressure gradient;
M, Hartmann number;
x', ¥, Z', space coordinates;
x, y, z, nondimensional space coordinates;
a b, T,, T,, arbitrary constants.

Greek symbols

¢, 0, temperature ;

1, coefficient of viscosity;

0, density;

a, electrical conductivity ;

, a parameter;

Hos a constant;

8, 0,y 0., central difference operators;

[T mean difference operator;

Ax, Ay, Az, space intervals in x, y and z directions,

respectively ;

B, reciprocal of Peclet number ;

D, dissipation function.
Subscripts

I, J, K, represent order of the matrices;

i,j, k, location in (x, y, z) space.
Superscripts

n, number of iterations;

* e intermediate levels between two con-

secutive iterations.

1. INTRODUCTION

HEAT transfer for MHD flow between parallel plates
when the temperature on one side (z < 0) is different
from the other side (z > 0), was considered by Nigam
and Singh [1]. Singh and Lal [2] considered a similar
problem for heat transfer for MHD flow between two
coaxial cylinders.

In this paper, we discuss the solution for the
temperature distribution in the flow region of a
rectangular pipe when there is a temperature discon-
tinuity in the wall temperatures at a given section. The
walls are assumed to be of nonconducting material and
the applied magnetic field is transverse and parallel to
a side of the section (Fig. 1). The x'-axis is parallel to
the applied magnetic field B, y’-axis perpendicular to
it and in the section and the z'-axis along the flow
direction. The boundary temperature has a discon-
tinuity at the section z/ = 0, to the left of which the
boundary temperature is T, while to the right itis T,.
The aim is to compute the temperature distribution in
theregion —a < x’' <a,—b<y <band —xc <z <
oo, where 2a and 2b are the sides of the section.

For large values of ||, the perturbations due to the
discontinuity at z’ = 0 are negligible and the problem
reduces to a simple 2-dim. Dirichlet problem, the
solution of which has been found by the finite differ-
ence method. But in the vicinity of 2/ = 0 the situation
becomes complicated owing to the involvement of all
the three space variables. The usual finite difference
method becomes too uneconomical due to the very
large number of unknowns involved. We have found
that for this problem the alternating direction implicit
(ADI) method is very efficient and economical. It
reduces the problem to one of solving tridiagonal
systems of equations alternately along lines parallel to
axes, thereby sufficiently reducing the number of
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unknowns to be found at one time. The results were
obtained for various Hartmann numbers in the entire
flow region. They are discussed for selected points and

hnec and h M 3
lines and how their behaviour

along some of these lines.
2. BASIC EQUATIONS

The energy equation for MHD flows is
pe(V VW = @ + kV*G + J*o. (1)

oranhg are drawn tao <
grapns ar¢ ¢qrawn o s

In cartesian co-ordinates (x', y', z'), equation (1)

becomes
o0 V.2 + oV,
g ay ox’
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The boundary conditions on ¢ are
Oltay. z)=T, |y <b <0,
#(x, £b2)=T,, |x|<a z<0, 3)

O(+ay z2)=T, |y <b >0,
0, £b2)=T,,

To nondimensionalize equation (2) we introduce the
following nondimensional variables and parameters:

0= (9' - TZ)/(TI - Tz),

|x'| <a 2 >0.

x =x'{a, y =Y/a, 1 = bla,
Ve = Ka*/n, V =V,/V, ~K = pressure gradient,
P, = Vyac/k = Peclet number, g = 1/P,,
B = B./[Votolon)' 2],
z =2 [aP,),
Q = nV3/[K(T, ~ Ty)],
M = Bya(s/q)'? = Hartmann number.

4

Then equation (2} takes the form
3*6

— 69 z 2
i Vix, y)g; — Qf(VV)* + (VB)*]

Vi + p*
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Notice that V and B are functions of x and y only. This
is due to the assumption that the buoyancy forces
caused by the temperature difference are negligible as
compared to the inertial and frictional forces. The
same assumption is made by Nigam and Singh [1] for
the problem of Hartmann flow. Singh and Lal [2] have
solved a similar problem for the flow between two
coaxial cylinders under radial magnetic field. This
assumption implies that the expressions for ¥ and B
may be taken from previous papers that have dealt
with the determination of V and B.

The boundary conditions now become

2

ol

YRR | vt | I DN 5
LY. z)= 4L PYis<ith <4

Bx, + 1, 2)=1, |x]<1, z<0, ©)
0(+1,y,2)=0, |y|<yx 2>0,
Ox. + 1,2)=0, |x|] <1, z>0.

When the walls are nonconducting, the expressions for
V and B, as given by Shercliff { 3] can be written as

V=3~ - ¥ A
k=1

(sh m, chmyx + shm,ch m‘x>cos wyy, (T

sh(m, + m,)

B=7Y 4,

k=1
sh m, sh m,x — shm, sh mlx)cos oy (8)
sh(m, + m;)
where

m; = —a+5uk’ m2za+§‘£ks (9)

”k = ((x2 + (Dz)h},

A _ 1612 (_1)k+1

TR k-1

To solve equation (5) for 8, the above expressions for V

(5) and B are used as substitutions. This leads to a very
y
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MHD flow through a rectangular pipe

complicated RHS. The coefficient of 86/0z is also
variable. The analytical solution is therefore out of the
question. To obtain the numerical solution, we have
divided the discussion into two parts: (i) Solution for
large |z|, and (i) Solution near z = 0.

3. SOLUTIONS FOR LARGE VALUES OF |z|

As already pointed out, at large distances from the
section z = 0, the effects of discontinuity will be
negligible as a result of which the solution ceases to
depend upon z,

0(x, y, z)>¥(x, y) as z— .

(11)

The equation in ¥ can be obtained from equation
(5) by replacing 0 by ¥ and putting 86/0z = 0. This
gives

(227‘5 + L:TT = —Q[(VV)* + (VB)’] = — f(x, y)
(12)
The boundary conditions on ¥ will be
Y(£1,y)=1 |y]<y z<0
Yix, + ) =1 |x|<1 z<0, (13)
P(+1L,y=0 |yl<yx z>0,
¥ix, +1)=0, |x| <1, z>0.

Hereafter, we shall denote the solutions of equation
(12) for z - —oc and z —oc by ¥, and ¥,
respectively. It is immediately clear that

Wix, y) =1+ Wyx, y) (14)

Therefore we shall concentrate on finding ¥, only.
3.1. Numerical solution of equation (12)
To solve the Dirichlet problem defined by equations

(12)and (13), we have used the finite difference method.
For this we have chosen the square pipe (y = 1) and
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F1G. 2. Plot of ¥, along x-axis.
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fitted a mesh of size Ax = 1/8, Ay = 1/8. This leads to
225 internal nodes in all in the entire section. However,
owing to the symmetry about both axes, the discreti-
zation is done only in the first quadrant. Notice that
this amounts to using the conditions d¥,/dx = 0 and
d¥,/0y = Oalong x = Oand y = 0, respectively. This
leaves 64 unknowns. Counting i in x-direction and j
along y-direction and denoting the value at the point
(x;, ¥;) or (iAx, jAy) by ¥, the discretization at (x;, y;)
gives

js

EIWE B STRWE B PP L L T

= — hzﬁj + O(h*) (15)
where

Ji=fxpy) i=118, j =118

To compute f;;, we first obtained the expressions for
oV /ox, 0V [0y, OB/ox, éB/dy by differentiating equa-
tions (7) and (8) and then evaluated these numerically
at all 64 points. The values of f;; for different Hartmann
numbers, with Q@ = 1, are obtained. The solution of the
equations given by equation (15)is a quite simple task as
the coefficient matrix is banded. The graphs showing
W¥,(x, y) along the x and y axes are plotted in Figs. 2
and 3. ¥,(x, y) is then obtained from equation (13).

4. SOLUTION NEAR z =0

Although the solution W¥,(x, y) obtained above is
valid only when z — o, the perturbations due to the
discontinuity at z = 0 have negligible effect after some
distance, say Z, > 0, to the right of z = 0. Then ¥,(x,
y) gives a fairly good temperature distribution in the
range (Z,, «0). Similarly, ¥, (x, y) is valid in the range
(— oo, —Z;), where Z, > 0 is some suitable number.
Now the problem remains to solve equation (5) in the
bounded region

-l<x<l, —y<y<y —Z,<z<Z, (16)
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FiG. 3. Plot of 'V, along y-axis.
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The boundary conditions on € will be

B+ iy2=1 |yvi<y -Z, <z<0,
Bx, +y, =1 |x i<1 —-Z, <z <0,
£ 1L,yz)=0, |y<i 0<z<Z,, (17
Ox, +3.2)=0, |x|] <, 0<z<Z,,
Bx. 3, Z) =¥ {x. p), [x| <1, Jyl<n
0(x, y, Z,) = Po(x, p) x| <1, |y <

4.1, ADI method

To solve the above 3-dim. problem in which V{x, y}
appears as a variable coeffcient, we have applied the
Peaceman-Rachford ADI method. For this purpose,
we fit a mesh of size Ax, Ay, Az along the three axes. Let
it give, say, I, J and K internal nodes along these
directions. A point {x;, y, z;} in the region under
consideration is defined by

xp=(—1) Ax~1,  i=1DI+2
y=0=-D4Ay -1 j=1J+2 (18
e=(k-1Az—~Z,, k=HK+2,

wherei = 1, I + 2;j=LJ+2;k=1LK+ 2
correspond to the boundary points. We shall denote
thevalue of fat{x, y, z,) by 0;;. ForAx = Ay = Az =
#, the Peaceman—Rachford scheme can be expressed
by the following equations:

(w— 62)0”'( = (00"'(32 /325f”hVij#:5z) e+ hzﬁj

= ply, say, i =2{1)+1, {19)
{w— 800k = (w+82+ 207 —hV 805+ 1 1

= ph, say, j=21)J + 1, (20)
(w—B2ON0" = (w+8Z+8L—hV u, 8,085 + b f;

= pi¥, say, k=2(1)K + |, 21}
where

5;‘95& =0i-y =205+ 01y a
b0 = 50; jav s — 0 ju) €tC (22)

and ¥ is the velocity at (x;, y;) which have been
computed from the exact solution (7). Here w > Oisa
parameter to be suitably chosen to give fast con-
vergence. The three steps above give values after
{n + 1} iterations starting from values at n'® iteration.
The values with superscripts * and ** are intermediate
values, The totality of the above scheme leads to the
following matrix equations:

A =1 =200 +1,
ABEF = rf, 1=20H + 1,
ARG =gy i =200 + 1,

if

E=2ADK + 1, 23
k=2(1K + 1, (24)
J=201)J +1, 25

where A, and A, are tridiagonal matrices of orders f
and J, respectively, defined by

aij=2+(’Ug i-_...j’

Bani SinGH and Jia Lat

li—jl=1, (26)

= 1,
=0, otherwise.

Similarly, the matrix 4% is again a tridiagonal matrix
of order K whose elements are defined by

a; =2+ w/p, i=j
=—1, i—jil=1, 27}
=0, otherwise.
The vectors @ and r are given by
6’5; = {Ql:lz}kx agjle R Gg*;ﬂ}jk]ry
o5r = [O%% 086 .- 9?(‘?1» m}'r’ (28)
H?j“ = [971511 9:.}451’ (’?;Thlﬂx T,

= P + 0o Pogpo -
i = [Pl + O8% P -

-
o Pl Plarnje T Q{*{H;,ﬁ}

o Pl Phas i + 05Foand ™S
(29}
ri® = [p33/8% + 051", pES/B°. .. pEM/P

Phs i}f.gz + ‘qfs?xl-k ] T

Each one the matrices 4,, 4, and A% is tridiagonal and

diagonally dominant. The solution can be obtained

using the Thomas algorithm [ 5] or still better using the
Evans decomposition [6].

Notice that by solving equation (23) all the un-
knowns which are IJK in number, are being obtained at
the * level by solving only / tridiagonal equations at a
time, line by line where lines are being taken parallel to
the x-axis. Similarly, equation {24) requires solution of
only J equations at a time by taking lines parallel fo the
y-axis. This gives all unknowns at the ** level. Finally,
from equation (25) we determine all the unknowns at
the (n + 1)level by solving K equationsata time. Ithas
been found that the total number of operations
(multiplication and division) required in going from
the nth to the {n + 1)th iterations is

61JK — (I + IK + JK)

where the unknowns involved will be 31JK. Keepingin
view the other methods, e.g. Gaussian elimination, this
is much more economical and efficient.

To start the iterations, the initial values are taken as

B, =10, —Z, <z, <0, i=20+1,
=05 z,=0, =210+ 1, (30}
=00, O0<z<Z,

5. NUMERICAL WORK AND DISCUSSION

For all calculations, we have chosen y = 1, ie. the
section of the channel is a square of side 2. The values of
B and Q arealso chosen as unity. The mesh size is taken
asAx = Ay = Az = h = /8. Thisgives = J = 15,
The values Z, = Z, = 4.0 are obtained by trial and
error because we have noted that the perturbationsin @
due to discontinuity at z = 0 are negligible outside
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Fi1G. 4. Temperature distribution on lines 1, 2, 4 and 5 for M = 5.

[ —4,4]. This, with h = 1/8, gives K = 63. The choice
= 1 has an advantage that the diagonal elements in all
the matrices 4;, A; and A have the same numerical
values and the same decomposition will work for all of
them. The parameter w is again obtained by trial and
error. We found o 4.7 leads to a very fast
convergence. Note more than 80 iterations were
required for any Hartmann number. Actually, in some
cases, only 30iterations were needed to achieve 5-place
accuracy. The choice of the initial values is also
important but in the present circumstances we did not

have a better choice than given by equations (30). It
was also noticed that one cycle of iterations took about
2 s of CPU time on a DEC-2050 system.

The calculations were carried out for the tempera-
ture distribution at 4160 points given by

x; = i/8, i=1(1)8,
y; =J/8, ji=1(1)8, (31)
z,= —4 + (k — 1)/8, k= 1(1)65,

for various values of the Hartmann number. We have

0.002

—-0.002

-0.004

-0.006

-0.008

8(MHD)~- B(HYD)

=0.010

-0.012

-0.014

-0.016

FI1G. 5. Temperature difference berween MHD and hydrodynamic cases on line 1.



1528

BANI SINGH and Jia LAL

0.0030

0.0025 —

0.0020 —

0.0015
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0.0005

L
00010 \‘/——_ﬁ
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FiG. 6. Temperature difference between MHD and hydrodynamic cases on line 5.

chosen following lines for the discussion of the results:

1. x=0, y=0

2.x=172, y=0

3.x=0, y=12 r—4<z<4 (32)
4. x =12, =1/2

5. x=7/8, y=17/8

Figure 4 gives the variation of § along the lines 1, 2,4
and 5 for M = 5 (iine 3 is not depicted due to the
overlapping of graphs). After examining several gra-
phs, which include those for the difference between
MHD and hydrodynamic cases along several lines for
various Hartmann numbers, we have made the follow-
ing observations:

(1) In the presence of a magnetic field the tempera-
ture shows a decreasing tendency in the region close to
the discontinuity. This effect becomes more and more
pronounced as the Hartmann number increases
(Fig. 5).

(2) Away from the discontinuity, the temperature
shows increasing tendency with Hartmann number
(Fig. 5).

(3) The lines very close to the boundary are an
exception as shown in Fig. 6 where temperature
increases with Hartmann number for all values of z.
This is due to the high electric currents following in the
boundary layers giving larger heating effects.
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TRANSFERT THERMIQUE POUR UN ECOULEMENT MHD A TRAVERS UN TUBE
RECTANGULAIRE AVEC DISCONTINUITE DES TEMPERATURES DE PAROI

Résumé—On étudie numériquement la distribution de température d’un écoulement permanent axial

MHD i travers un tube rectangulaire. Du fait de la discontinuité des températures de paroi, 'équation

aux dérivées partielles est elliptique, 4 trois dimensions, avec des coefficients variables et elle ne peut

étre résolue analytiquement. Les méthodes classiques aux différences finies ne sont pas adaptées a cause

du grand nombre d’inconnues impliquées. La méthode ADI est la plus adaptée car elle économise du

temps de calcul et des mémoires de 'ordinateur. On donne des graphes pour représenter la distribution
de température prés et en aval de la discontinuite, pour différents nombres de Hartmann.
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WARMEUBERTRAGUNG AN EINE MHD-STROMUNG IN EINEM RECHTECKIGEN ROHR
MIT VERANDERLICHEN WANDTEMPERATUREN

Zusammenfassung—Die Temperaturverteilung in einer stationdren axialen MHD-Stromung in einem
rechteckigen Rohr wurde numerisch berechnet. Wegen der Diskontinuitdt der Wandtemperaturen kann die
resultierende Differentialgleichung, eine dreidimensionale elliptische partielle Differentialgleichung mit
veridnderlichen K oeffizienten, nicht analytisch gelost werden. Das traditionelle Differenzenverfahren 1aBt
sich infolge der groBen Zahl der enthaltenen Unbekannten nicht anwenden. Das ADI-Verfahren, so wird
festgestellt, ist das geeignetste Verfahren zur Losung dieses Problems, da es sowohi Rechenzeit als auch
Speicherplatz spart. Anhand von grafischen Darstellungen wird die Temperaturverteilung an und in einiger
Entfernung von der Diskontinuitit bei verschiedenen Hartmann-Zahlen gezeigt.

TENJIOIEPEHOC NPHU MI'A-TEYEHHUHU B IMPAMOYIOJIBHOM KAHAJIE CO
CKAYKOM B PACIHPEAEJEHHWUU TEMHNEPATYPbLI CTEHOK

AnHoTaiMA—YHCIEHHBIM METOAOM TNOJIYYEHO paclipefic/leHHe TEMNEpaTyp I CTALMOHAPHOIO
axcua/bHOro MI'/l-teuenns B npAMOYrojibHOM kaHase. M3-3a ckavka B pacnpene/icHHM TeMIepaTypsl
CTEHOK nosyuyeHHoe aupdepeHuHaNLHOEe ypaBHEHHE, NPeACTaBIsiollee cOOON TPEeXMEPHOE 3JIMNTHYE-
CKO€ yPDaBHEHHE B YACTHBLIX MPOM3BOIHLIX C MEPEMEHHBIMH KOIDOHULUHEHTAMH, HEBO3MOKHO DPELIKTD
aHaJIMTHYeCKH. TpaaMuMOHHBIE Pa3HOCTHBIE METOIbI OKA3aJIHCh HEMPUIOAHBIMH H3-32 O4€HBb GOJIBLIOTO
4HCJIa Hew3BecTHhIX. Haineno, uro nambosiee moaxoasiMM ABJISETCH HESBHBLIA METOJ MEPEMEHHBIX
HANPABJIEHHH, MO3BOJIAIOIIMA JKOHOMHUTBL BpeMsi M NaMATb KOMNbIOTepa. [IpencraBiieHb! KpPHBBIE
pacrpefle/IeHHs Temnepatyp BOJIM3H M BJANM OT CKauyka TEMNEPATYPbl NPH pPa3jIHYHbIX 3HA4YEHHAX
4yuciaa 'apTMaHa.
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