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Abstract-The temperature distribution for steady MHD axial flow through a rectangular pipe has been 
calculated numerically. Owing to the discontinuity in the wall temperatures, the resulting differential 
equation which is a 3-dim. elliptic partial differential equation with variable coefficients, becomes impossible 
to handle analytically. The traditional finite difference methods become unsuitable due to the very large 
number of unknowns involved. The ADI method is found to be most suitable for the problem as it saves time 
as well as computer storage. Graphs are given to depict the temperature distribution near and away from the 

discontinuity for various Hartmann numbers. 
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NOMENCLATURE 

specific heat ; 
velocity ; 
applied magnetic field ; 
induced magnetic field ; 
Peclet number ; 
thermal conductivity; 
current density; 
pressure gradient ; 
Hartmann number ; 
space coordinates; 
nondimensional space coordinates; 

a, b, T,, T,, arbitrary constants. 

Greek symbols 

8’9 0, temperature ; 

% coefficient of viscosity ; 
P> density; 

0, electrical conductivity; 

w, a parameter ; 

PO> a constant ; 
6,, 6,, 6,, central difference operators; 

&Y mean difference operator ; 
Ax, Ay, AZ, space intervals in x, y and z directions, 

Subscripts 

1, J. K, 
i, j, k, 

respectively; 
reciprocal of Peclet number; 

dissipation function. 

represent order of the matrices; 
location in (x, y, z) space. 

Superscripts 

4 number of iterations ; 
* ** 9 > intermediate levels between two con- 

secutive iterations. 

1. INTRODUCTION 

HEAT transfer for MHD flow between parallel plates 

when the temperature on one side (z < 0) is different 

from the other side (z > 0), was considered by Nigam 
and Singh [ 11. Singh and La1 [2] considered a similar 

problem for heat transfer for MHD flow between two 
coaxial cylinders. 

In this paper, we discuss the solution for the 
temperature distribution in the flow region of a 
rectangular pipe when there is a temperature discon- 
tinuity in the wall temperatures at a given section. The 
walls are assumed to be of nonconducting material and 
the applied magnetic field is transverse and parallel to 
a side of the section (Fig. 1). The x’-axis is parallel to 
the applied magnetic field B,, y’-axis perpendicular to 
it and in the section and the z’-axis along the flow 

direction. The boundary temperature has a discon- 
tinuity at the section z’ = 0, to the left of which the 
boundary temperature is T, while to the right it is T,. 

The aim is to compute the temperature distribution in 
theregion-a<x’<a,--b<y’<band-rc.<z’< 
nj, where 2a and 2b are the sides of the section. 

For large values of Iz’ 1, the perturbations due to the 
discontinuity at z’ = 0 are negligible and the problem 
reduces to a simple 2-dim. Dirichlet problem, the 
solution of which has been found by the finite differ- 
ence method. But in the vicinity of z’ = 0 the situation 
becomes complicated owing to the involvement of all 
the three space variables. The usual finite difference 
method becomes too uneconomical due to the very 
large number of unknowns involved. We have found 
that for this problem the alternating direction implicit 
(ADI) method is very efficient and economical. It 
reduces the problem to one of solving tridiagonal 
systems of equations alternately along lines parallel to 
axes, thereby sufficiently reducing the number of 
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unknowns to be found at one time. The results were 
obtained for various Hartmann numbers in the entire 
flow region. They are discussed for selected points and 
lines and graphs are drawn to show their behaviour 
along some of these lines. 

2 BASIC EQUATIONS 

The energy equation for MHD flows is 

pc(v + V)@’ = @ + kV% + J’,‘c. (1) 

In Cartesian co-ordinates (x’, y’, z’), equation (1) 
becomes 

+ k 

[ 

iizB’+ dW I S% 
ad= c?yt2 1 dz’2 * 

The boundary conditions on 0’ are 

B’(fa,y’,z’)=T,, ly’l56, z’<O, 

(2) 

where 

Notice that 1/ and B are functions of x and y only. This 
is due to the assumption that the buoyancy forces 
caused by the temperature difference are negligible as 
compared to the inertial and frictional forces. The 
same assumption is made by Nigam and Singh [ 1] for 
the problem of Hartmann flow. Singh and La1 [23 have 
solved a similar problem for the flow between two 
coaxial cylinders under radial magnetic field. This 
assumption implies that the expressions for V and B 
may be taken from previous papers that have dealt 
with the determination of 1/ and B. 

The boundary conditions now become 

@(+l,p,z)=l, j.Yj<x, z<Q, 

e(x,fX,z)=l, IXI<l, z<o, 
(6) 

e(+l,y,z)=O, (Yl<X, z>o, 

0(x, -+ 1. z) = 0, 1x1 < 1, z > 0. 

eyx’, + b, 2’) = T,, ix’/ < a, z‘ < 0, When the walls are nonconducting, the expressions for 
(3) 

fY( f a, y’, z’) = T,, 1 y’l I b, z’ > 0, 
v and B, as given by Shercliff [3] can be written as 

f?‘(x’, + b, z’) = T,, lx’1 I a, z’ > 0. V = 2~” - y2) - i Ak 
t=i 

To nondimensionalize equation (2) we introduce the sh 
following nondimensional variables and parameters: X 

i 

nzr ch m,x + sh mz ch m,x 

sh(m, + ml) ! 

cm WkY, (7) 

0 = (0’ - T,)/(T, - T,), 

x = x’ja, y = y’/a, x = b/a, 
B= ;fAI 

k=l 

V, = Ka’/q, V = V,./V,, -K = pressuregradient, 

P, = V,ac/k = Peclet number, p = l/P,, 

sh rnr sh mzx - sh mz sh m,x 
X 

> 

CoswkY @) 
sh(mr f m,) 

B = WEVoPobi)’ 12J, 
z = z’/(aP,), 

Q = ~C?I[k(T, - r,)], 

M = Boa(cr/q)“2 = Hartmann number. 

(4) 
where 

ml= -a+p,, m,=a+&, 
(9) 

pk = (a’ + I#~‘, 

ok = (2k - 1)~/2~, (10) 

Then equation (2) takes the form 4 
k 

To solve equation (5) for 8, the above expressions for V 

(5) and B are used as substitutions. This leads to a very 

Y’ 

FIG. 1. 
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complicated RHS. The coefficient of dB/az is also 
variable. The analytical solution is therefore out of the 
question. To obtain the numerical solution, we have 
divided the discussion into two parts : (i) Solution for 
large (~1, and (ii) Solution near z = 0. 

negligible as a result of which the solution ceases to 

3. SOLUTIONS FOR LARGE VALUES OF IzI 

As already pointed out, at large distances from the 
section z = 0, the effects of discontinuity will be 

fitted a mesh of size Ax = l/8, Ay = l/S. This leads to 
225 internal nodes in all in the entire section. However, 

gives- 

owing to the symmetry about both axes, the discreti- 
zation is done only in the first quadrant. Notice that 
this amounts to using the conditions aY’,/ax = 0 and 
dY,/ay = 0 along x = 0 and y = 0, respectively. This 
leaves 64 unknowns. Counting i in x-direction and j 
along y-direction and denoting the value at the point 
(xi, yi) or (iAx, jAy) by Yii, the discretization at (xi, yj) 

depend upon z, 

0(x. y. z) + Y(x, y) as z + X. (11) 

Yi-1.j + yi+I.j + Yi.j_1 + yi,j+I - 4yij 

= - h”J, + 0(h4) 
The equation in Y can be obtained from equation where 

(5) by replacing 0 by Y and putting d@/dz = 0. This 
gives 

g + $ = -Q[(Vv)’ + (VL?)~] = -f(x, y) 

(12) 

The boundary conditions on Y will be 

Y(k l,y)= 1, (Yl<X, z<o, 

Y(x, + x) = 1, 1x1 < 1, z < 0, (13) 

W~l,y)=O, lYJ<X, z>oo, 

Y(x, f x) = 0, 1x1 < 1, z > 0. 

Hereafter, we shall denote the solutions of equation 
(12) for z + - CI_ and z -+x by Y, and Y2, 
respectively. It is immediately clear that 

Y’,(x, Y) = 1 + Y’,(x, y). (14) 

Therefore we shall concentrate on finding Y’, only. 

3.1. Numerical solution of equation (12) 
TO solve the Dirichlet problem defined by equations 

(12) and (13) we have used the finite difference method. 
For this we have chosen the square pipe (1 = 1) and 

0.25 
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(15) 

fij =f(xi, yj), i = 1(1)8, j = l(l)% 

To computehj, we first obtained the expressions for 
W/ax, aV/ay, aB/ax, ?B/ay by differentiating equa- 
tions (7) and (8) and then evaluated these numerically 
at all 64 points. The values offij for different Hartmann 
numbers, with Q = 1, are obtained. The solution of the 
equations given by equation (15) is a quite simple task as 
the coefficient matrix is banded. The graphs showing 
Y’,(x, y) along the x and y axes are plotted in Figs. 2 
and 3. Y’,(x, y) is then obtained from equation (13). 

4. SOLUTION NEAR I = 0 

Although the solution Y2(x, y) obtained above is 
valid only when z + 2, the perturbations due to the 
discontinuity at z = 0 have negligible effect after some 
distance, say Z2 > 0, to the right of z = 0. Then Y,(x, 
y) gives a fairly good temperature distribution in the 
range (Z,, cc). Similarly, Y i(x, y) is valid in the range 
(- co, - Z,), where Z, > 0 is some suitable number. 
Now the problem remains to solve equation (5) in the 
bounded region 

-1 <x < 1, -x < y <x, -Z, <z < Z,. (16) 

1 

FIG. 2. Plot of Y, along x-axis. FIG. 3. Plot of Yz along y-axis. 



To solve the above 3-dim. problem in which V(x, J) 
appears as a variabIe eoeffcient, we have applied the 
Peacemau-Rachford ADlE method. For this purpose, 
we fit a mesh ofsize Ax, A\y, AZ along the three axes. Let 
it give* say, I, J and K internal nodes along these 
directions, A point (xi, _Y~, zk) in the region under 
consideration is defined by 

Xi = (i - 1) AX - 1, i = 1(1)1 -I- 2, 

vj = (j - 1) AJI - 1, j = rn{f)J $ 2, (18) 

fk = (k - I) As - 21, k = l(f)K -I- 2, 

wherei = 1,I + 2;j = 1,J + 2;k = 1,K + 2 
correspond to the boundary points. We shall denote 
the value of 6’ at (x, yj+ zk) by Qi,. For Ax = Ay = AZ = 
A, the Peaceman-Raehford scheme can be expressed 
by the foltowing equations: 

(0 - s:>e;, = (W + 6; + flzSz - hV,j,U,6,)8;, + h’Aj 

= a~j~, say, i = 2(1)f+ 1, 0% 

(w-s;)8$k* = (rrti-S~cP2a,Z-hVij~z*~r)U~kfJZ’f;j 

= p$,, say, j = 2(1)3 -I- 1, (20) 

(W-fi26~)B~$ ’ = (W+S: -t-S,Z-hV,j~,G~)tl~~+~‘fij 

= P?g 
say* k = Z(l)K f i, 

WI 

where 

c’iz$ijk = fli- 1 ,j.k - 28, f Oi+ 1 .j,k 

&$*@tj,k = &@ij.k+ 1 - Bi.j.k- 11 etcs G9 

and t/‘ij is the velocity at (x, yj) which have been 
computed from the exact solution (7) Here o > 0 is a 
parameter to be suitably chosen to give fast con- 
vergence. The three steps above give v&es after 
(IS f f ) iterations starting from vahres at nfh iteration. 
The values with superscripts * and ** are intermediate 
values, The totality of the above scheme leads to the 
fohowing matrix equations : 

aij =21-w, i=j, 

= -1, Ii - jl = 1, (261 

= 0, OttrHWiSk 

Similarly, the matrix Afk. is again a tridiagonat matrix 
of order K whose elements are defined by 

ff:j=2t-cU/B2, i=j, 

Each one the matrices A, AJ and Ai is tridiagonal and 
diagonally dominant. The solution can be obtained 
using the Thomas algorithm [5] or still better using the 
Evans decomposition [6]+ 

Notice that by solving equstion (23) ah the ua- 
knowns which are IJK in number, are being obtained at 
the * level by solving only I tridiagonal equations at a 
time, line by line where lines are being taken parallel to 
the x-axis. Similarly, equation (24) requires sofution of 
only d equations at a time by taking lines paralfef to the 
y-axis. This gives ail unknowns at the ** level. Finally, 
from equation (25) we determine all the unknowns at 
the (n + 1) level by solving K equations at a time. It has 
been found that the total number of operations 
~multipl~~ation and division) required in going from 
the rrth to the (n + 1)th iterations is 

6I.lK - (IJ + IK + JK) 

where the unknowns invohed will be 31JK. Keeping in 
view the other methods. e.g. Gaussian elimination, this 
is much more economical and efficient. 

To start the iterations, the initial values are taken as 

NGk = 1‘0, -21 < Zk < a, i = 2(l)/ + 1, 

= 0.5, z’& = 0, j = 2(I)f $ 1, (30) 

= 0.0, 0 “=C Zk < z,. 

5, ~~~~~~~~~~ WORK AND llISCUSlON 

For all calculations, we have chosen x = 1, i.e. the 
section of the channel is a square of side 2. ThevaIues of 
,!? and Q are also chosen 8s unity. The mesh size is taken 
asAx = Ay = AZ = h I= l/8_ This gives J = .J = 15, 
The vaOues Z$ = 2, = 4.0 are obtained by trial and 
error because we have noted that the perturbations in B 
due to discontinuity at z = 0 are negligible outside 
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al 

0.8 
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FIG. 4. Temperature distribution on lines 1, 2,4 and 5 for M = 5. 

[ -4,4]. This, with h = l/8, gives K = 63. The choice /I 
= 1 has an advantage that the diagonal elements in all 
the matrices A,, A, and A; have the same numerical 
values and the same decomposition will work for all of 
them. The parameter o is again obtained by trial and 
error. We found o = 4.7 leads to a very fast 
convergence. Note more than 80 iterations were 
required for any Hartmann number. Actually, in some 
cases, only 30 iterations were needed to achieve Splace 
accuracy. The choice of the initial values is also 
important but in the present circumstances we did not 

have a better choice than given by equations (30). It 
was also noticed that one cycle of iterations took about 
2 s of CPU time on a DEC-2050 system. 

The calculations were carried out for the tempera- 
ture distribution at 4160 points given by 

xi = i/8, i = 1(1)8, 

Yj =j/8, j = 1(1)8, (31) 

zt = -4 + (k - 1)/8, k = 1(1)65, 

for various values of the Hartmann number. We have 

0 

-0.002 

-C1016 

-2.5 -2 

FIG. 5. Temperature difference berween MHD and hydrodynamic cases on line 1. 
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FIG. 6. Temperature difference between MHD and hydrodynamic cases on line 5. 

chosen following lines for the discussion of the results: 

1. x =o, y=o 

2. x = l/2, y = 0 

3. x = 0, y = l/2 -4<z14. (32) 

4. x = 112, y = 112 

5. x = 718, y = 718 1 

Figure 4 gives the variation of 0 along the lines 1,2,4 
and 5 for M = 5 (line 3 is not depicted due to the 
overlapping of graphs). After examining several gra- 
phs, which include those for the difference between 
MHD and hydrodynamic cases along several lines for 
various Hartmann numbers, we have made the follow- 
ing observations : 

(1) In the presence of a magnetic field the tempera- 
ture shows a decreasing tendency in the region close to 
the discontinuity. This effect becomes more and more 
pronounced as the Hartmann number increases 
(Fig. 5). 

(2) Away from the discontinuity, the temperature 
shows increasing tendency with Hartmann number 
(Fig. 5). 

(3) The lines very close to the boundary are an 
exception as shown in Fig. 6 where temperature 
increases with Hartmann number for all values of z. 
This is due to the high electric currents following in the 
boundary layers giving larger heating effects. 

1. 

2. 

3. 

4. 

5. 

6. 
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TRANSFERT THERMIQUE POUR UN ECOULEMENT MHD A TRAVERS UN TUBE 
RECTANGULAIRE AVEC DISCONTINUITE DES TEMPERATURES DE PAR01 

Rkumk-On itudie numtriquement la distribution de tempkrature d’un Bcoulement permanent axial 
MHD B travers un tube rectangulaire. Du fait de la discontinuite des tem@ratures de paroi, l’lquation 
aux d&iv&es partielles est elliptique, $ trois dimensions, avec des coefficients variables et elle ne peut 
itre r&olue analytiquement. Les mbthodes classiques aux diffirences finies ne sont pas adaptles B cause 
du grand nombre d’inconnues impliqu&s. La mCthode AD1 est la plus adapt& car elle &onomise du 
temps de calcul et des mCmoires de l’ordinateur. On donne des graphes pour rep&enter la distribution 

de temp&ature pr& et en aval de la discontinuite, pour diffkrents nombres de Hartmann. 
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WARMEUBERTRAGUNG AN EINE MHD-STRGMUNG IN EINEM RECHTECKIGEN ROHR 
MIT VERANDERLICHEN WANDTEMPERATUREN 

Zusammenfassung-Die Temperaturverteihmg in einer stationaren axialen MHD-Stromung in einem 
rechteckigen Rohr wurde numerisch berechnet. Wegen der Diskontinuitat der Wandtemperaturen kann die 
resultierende Differentialgleichung, eine dreidimensionale elliptische partielle Differentialgleichung mit 
veranderlichen Koeffizienten, nicht analytisch gel&t werden. Das traditionelle Differenzenverfahren lll3t 
sich infolge der groDen Zahl der enthaltenen Unhekannten nicht anwenden. Das ADI-Verfahren, so wird 
festgestellt, ist das geeignetste Verfahren zur Losung dieses Problems, da es sowohl Rechenzeit als such 
Speicherplatz spart. Anhand von grafischen Darstellungen wird die Temperaturverteilung an und in einiger 

Entfernung von der Diskontinuitlt hei verschiedenen Hartmann-Zahlen gezeigt. 

TEHJIOHEPEHOC IIPH MI&TEYEHHM B HPRMOYI-OnbHOM KAHAJIE CO 
CKAYKOM B PACHPEAEJIEHWH TEMHEPATYPbI CTEHOK 

AtmoTawa-YucnenHbm MeTofl0h.f nonyreH0 pacnpciienemie rebmeparyp ana craunouapkioro 
axcuanbnoro MI&re~enun a nprh4oyronbuobi KaHane. Iti-3a cKaqKa B pacnpeneneHsa TeMnepaTypbI 

cTeHoK nonyseHHoe nm$@epeHuuanbHoe ypaBHeHtie, npencrraBnnmmee co6og TpexMeprioe annrinrmie- 
CKOe ypaBHeHlte B qaCTHbIX npOkf3BOnHbIX C nepeMeHHbIMA K03+~kiLUieHTaMR, HeBOSMOXHO peIIIHTb 

aHaJIHTHW.CKA. TpaAUIJUOHHbIepa3HOCTHbleMeTOAblOKa3aJIUCb HCnpUrOJJHblMU U3-3aOqeHb 6onbmoro 
YACJIa HeH3BCCTHbIX. Hairneao, 'iTO Haa6onee nOLIXO~IILlJHM IIBJISI’ZTCII HeSIBHbIii MeTOn nepeMeHHbIX 

HanpasneHuii. nO3BOJIJIIOLIWti 3KOHOMRTb BpeMI H naMIlTb KOMnbIOTepa. npenCTaBJIeHb1 KpHBbIe 

pacnpeneneHsn TeMnepaTyp B6nn3n n Bnann OT CKaYKa TeMnepaTypbI npn pa3nwiHbIx 3HaveHmx 

rrtcna rapTh4aHa. 


